Introduction to the Radiation Belts

Wm. Robert Johnston GEM Workshop - Midway, UT - 17 June 2007

Outline

- Introduction to radiation belts
- Trapped particle motions and adiabatic invariants
- Pitch angle
- Wave-particle interactions and the plasmasphere
- Source, loss, and diffusion mechanisms
- Observation platforms
- Conclusion

How far we've come...

The magnetosphere in 1965:

Radiation belt basics

- Radiation belts comprise energetic charged particles trapped by the Earth's magnetic field. (from keV to MeV)
- A given field line is described by its L value (radial location, in R_E, of its intersection with magnetic equator)
- Inner belt region:
 - Located at L~1.5-2
 - Contains electrons, protons, and ions.
 - Very stable.
- Outer belt region:
 - Located at L~3-6
 - Contains mostly electrons.
 - Very dynamic.
- Slot region: lower radiation region between the belts

NASA

Periodic motions of trapped particles (1)

ESA

- Three types of periodic motion of trapped particles
 - gyro motion
 - bounce motion
 - drift motion
- Each motion has an associated adiabatic invariant

- Gyro motion:
 - V x B acceleration leads to gyro motion about field lines
 - frequencies ~kHz
 - associated 1st invariant µ, relativistic magnetic moment:

$$\mu = \frac{p^2 \sin^2 \alpha}{2m_0 B}$$

pitch angle
$$\alpha$$
: $\tan \alpha = \frac{V_{\perp}}{V_{\parallel}}$

Periodic motions of trapped particles (2)

Bounce motion:

- As a particle gyrates down a field line, the pitch angle increases as B increases
- Motion along field line reverses when pitch angle reaches 90° (mirror point)
- period ~sec
- associated 2nd invariant J, longitudinal invariant:

$$J = \int_{-l_m}^{+l_m} p_{\parallel} dl$$

Periodic motions of trapped particles (3)

Drift motion:

- Gradient in magnetic field leads to drift motion around Earth: east for electrons, west for protons/ions
- period ~minutes
- associated 3rd invariant φ, magnetic flux:

$$\Phi = -\frac{2\pi B_E R_E^2}{L}$$

Pitch angle dependence

- Radiation belt populations are necessarily nonisotropic.
- Illustrated by nonisotropic distribution in velocity phase space:

 Figure shows range of equatorial pitch angle values sustainable for mirroring particles.

Plasmasphere

- Plasmasphere--a torus of cold (~1 eV), dense (10-10³ cm⁻³) plasma trapped on field lines in corotation region of the inner magnetosphere
 - outer boundary (plasmapause) tends to correlate with inner boundary of outer radiation belt
 - typically extends to L=3-5, but can be very structured and dynamic

2001/129/04:28 range: 6.08 RE S/C latitude = 64.61

IMAGE EUV web site

NASA/GSFC

Wave-particle interactions

- Wave-particle interactions: resonances between periodic particle motion and EM waves can energize or scatter particles
 - Whistler waves
 - ULF waves

Sources and energization mechanisms

- Sources include solar wind via outer magnetosphere or from plasmasheet plasma
- These particles energized by waveparticle interactions (e.g. whistler waves), crosstail E field fluctuations
- Cosmic ray albedo neutrons
 - cosmic rays --> n --> H⁺ and e⁻

Man-made sources

- High altitude nuclear explosions can produce artificial radiation belts
 - several US, Soviet tests in 1958-1962 produced short-lived belts inside the inner belt

Natural and Enhanced Electron Population
One Day After Burst Over Korea

Starfish, 1962, 1.4 mt, 400 km alt.

Nuclear Weapon Archive, 2005

 Currently a national security concern given our dependence on space assets

Loss mechanisms

- Anything that scatters particles into loss cone in phase space
 - such particles will collide with atmosphere
- Coulomb collisions with cold charged particles in plasmasphere, ionosphere
- Enhanced EMIC waves inside plasmapause
- Magnetopause shadowing
 - loss of particles with orbits carrying them outside the magnetopause

Summers et al., 1998

Diffusion mechanisms

- Wave-particle interactions
 - whistler chorus
 - EMIC waves
- Fluctuations in magnetospheric electric field

Solar Wind

Summers et al., 1998

Diffusion equations and phase spaces

Evolution of particle population described by diffusion equation:

rate of change in flux = sources - losses + diffusion terms

What phase space to use to model evolution?

basic positionmomentum space:

 $\mathsf{X},\ \mathsf{y},\ \mathsf{z},\ \mathsf{v}_{\mathsf{x}},\ \mathsf{v}_{\mathsf{y}},\ \mathsf{v}_{\mathsf{z}}$

(hard to use)

adiabatic invariants:

μ, J, φ

(easy to use)

observables:

 ϵ , α_{o} , L

(for interpretation)

Why there are two electron belts

- plot shows timescales for fixed µ=30 MeV/G (after Lyons and Thorne, 1973)
- D_{LL} drives inward diffusion, faster at large L
- whistler losses faster than replacement by diffusion in slot region
- those particles that reach low L have lifetimes of years

Illustrative satellites

- Explorer 1/3 (1958)
 - low Earth orbit, eccentric
 - geiger counter
- later satellites: multiple particle detectors, pitch angle info if spinning
- GOES (multiple, 1975-now)
 - geosynchronous orbit
- CRRES (1990-91)
 - eccentric orbit
- SAMPEX (1991-now)
 - low Earth orbit

NASA

Radiation fluxes from CRRES

- CRRES=
 Combined
 Release and
 Radiation
 Effects
 Satellite
- radiation flux observations from CRRES, 1990-91
- scale converted to rads/hour

Long term dynamics from SAMPEX

- SAMPEX=Solar Anomalous and Magnetospheric Particle Explorer
- SAMPEX observations over most of a solar cycle
- shows long-term dynamics in outer radiation belt

Conclusion

- Study of radiation belts is a rich topic with connections to many space physics subfields.
- Understanding of radiation belts is important to space operations, both manned and unmanned.
- Currently a "hot" topic from many different perspectives!

