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How far we’ve come...
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Radiation belts comprise energetic charged
particles trapped by the Earth’s magnetic
field. (from keV to MeV)

A given field line is described by its L value
(radial location, in R, of its intersection with
magnetic equator)

Inner belt region:
= Located at L~1.5-2
= Contains electrons, protons, and ions.
= Very stable.
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Basic Components of Particle Motion: bounce, gyraﬁon and drift
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= Three types of periodic motion of trapped particles

= gyro motion
= bounce motion
= drift motion

Spjeldvik and Rothwell, 1989

Periodic motions of
trapped particles (1)

=  Gyro motion:
= V x B acceleration leads to
gyro motion about field lines
= frequencies ~kHz
= associated 1st invariant p,

relativistic magnetic moment:
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Basic Components of Particle Motion: bounce, gyraﬁon and drift
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Periodic motions of
trapped particles (2)

Bounce motion:

= As a particle gyrates down a
field line, the pitch angle
increases as B increases

= Motion along field line
reverses when pitch angle
reaches 90° (mirror point)

= period ~sec

= associated 2nd invariant J,
longitudinal invariant:
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Basic Components of Particle Motion: bounce, gyraﬁon and drift
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Periodic motions of
trapped particles (3)

Drift motion:

= Gradient in magnetic field
leads to drift motion around
Earth: east for electrons,
west for protons/ions
period ~minutes

associated 3rd invariant ¢,
magnetic flux:
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= Radiation belt populations are 9 e
necessarily nonisotropic. 80
= lllustrated by nonisotropic 70 4
distribution in velocity phase g 60
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= Figure shows range of equatorial
pitch angle values sustainable for
' mirroring particles.
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Plasmasphere

= Plasmasphere--a torus of cold (~1 eV),
dense (10-103 cm-3) plasma trapped on
field lines in corotation region of the
inner magnetosphere

= outer boundary (plasmapause)
tends to correlate with inner

boundary of outer radiation belt |
= typically extends to L=3-5, but can

be very structured and dynamic
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Wave-particle interactions

= Wave-particle interactions:
resonances between periodic
particle motion and EM waves
can energize or scatter particles
= Whistler waves

= ULF waves
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Sources and
energization mechanisms
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High altitude nuclear explosions
can produce artificial radiation
belts

= several US, Soviet tests in 1S;a6r2f|sh,
1958-1962 produced short-lived ’
belts inside the inner belt 1.4 mt,
400 km alt.

Natural and Enhanced Electron Population
One Day After Burst Over Korea

Flux [e/cm¥s]

Nuclear Weapon
Archive, 2005

= Currently a national security
concern given our dependence
on space assets

Energy > 1MeV Papadopoulos/
electrons DTRA, 2000



r Wi
= Anything that scatters particles Y YYVYVYYVV VYV
into loss cone in phase space
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Diffusion mechanisms

Wind

RSN

= Wave-particle interactions /j/h /:&
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Diffusion equations and
phase spaces

= Evolution of particle population described by diffusion equation:
rate of change in flux = sources - losses + diffusion terms

= \What phase space to use to model evolution?

basic position- adiabatic observables:
momentum space: Invariants:
X, Y5 Z, Vys Vy, u, J, ¢ g, 0, L

(hard to use) (easy to use) (for interpretation)



timescale (days)

L value

Why there are two
electron belts

= plot shows timescales for
fixed y=30 MeV/G (after
Lyons and Thorne, 1973)

= D, drives inward diffusion,
faster at large L

= Whistler losses faster than
replacement by diffusion in
slot region

= those particles that reach
low L have lifetimes of years



Explorer 1/3 (1958)
= low Earth orbit, eccentric
= geiger counter
later satellites: multiple particle
detectors, pitch angle info if
spinning
GOES (multiple, 1975-now)
= geosynchronous orbit
CRRES (1990-91)
= eccentric orbit
SAMPEX (1991-now)

= |low Earth orbit

NASA




CRRES=
Combined
Release and
Radiation
Effects
Satellite

radiation flux
observations

from CRRES,

1990-91

scale
converted to
rads/hour

Radiation fluxes from
CRRES

Radiation Dose in the Van Allen Belts
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Dipole Axis

Courtesy of Joe Fennel at
Aerospace Corp.

Fennel/Aerospace Corp., 2003
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Long term dynamics
from SAMPEX

SAMPEX=Solar Anomalous and Magnetospheric Particle Explorer
SAMPEX observations over most of a solar cycle
shows long-term dynamics in outer radiation belt

Li et al., 2001
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Conclusion

= Study of radiation belts is a rich topic with connections
to many space physics subfields.

= Understanding of radiation belts is important to space
operations, both manned and unmanned.

= Currently a “hot” topic from many different
perspectives!
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